Wednesday, September 6, 2017

Cardio Experiences By The Numbers

So this is my first blog post in quite a while and, to be honest, I didn't think I would still be here to write it.

It all started 2 days after 9/11 when I had my first heart attack.I was one of many waiting to have such an experience  that was set off by the events of that fateful day. Three days later I had four bi-passes installed. Since that time I have had 11 stents, and been the recipient of a Pacemaker and a new aortic valve. I'm now awaiting the possibility of a Metaclip to stop the leaking in my heart. Anther heart attack at the end of 2015 pushed me into early retirement having been told by my then cardiologist that I had 2 - 3 months to live.

After I outlived his prediction I fired him and hooked up with a cardio-rehab cardiologist whose positive attitude and advice has kept me alive and kicking for the past 18 months. I try to do an hour of cardio-rehab each day and find the results stunning. Even though I am in the end stages of heart failure, the physical experience and motivation the cardio provides is absolutely amazing. My cardiologist, has his office right next to the gym and so he frequently gives me words of encouragement.

Some days are more difficult than others but I'm still here being as productive as my physical limitations allow me to be. And it's all because of the cardio-rehab regime.

By the way, both the installation of the Pacemaker and new aortic valve kept me in hospital less than a day each. In face I was back teaching the day after I had the Pacemaker installed.

Wednesday, February 8, 2017

Maths is the Science of Pattern

From the earliest experiences we have with maths the role of pattern plays a key role in how we learn and remember maths facts, concepts and relationships. The pattern of the number names as well as the numerals must be learned so that we can label and communicate our mathematical ideas in the same way that letter recognition and pronunciation is a prerequisite for literacy.

Even the idea of rational counting is a pattern where one more is added to get the next number or quantity. This can be extended to tens, hundreds, thousands and so on just by changing the referent being counted.

Counting by 2s and 5s is another  pattern that helps us learn and remember numerical relationships. Try counting by 5s starting at 3, instead of 0, and see what happens. The further you go the easier it gets because you very quickly see the pattern of 3s and 8s. The same can be done with fractions although it is clearly more difficult. Visualize half of a half of something. You should be seeing a quarter. Procedurally you have double the denominator to make one half into one quarter. So what is half of a third? A sixth? You double the 3 to get 6. Now you can find a half of any fraction without having to do the desperately miserable fraction multiplication algorithm. Try one third of a quarter. A twelfth, right?  You multiplied the denominator by 3. Now you can find a third of any fraction, even a third of three quarters; three twelfths. But that one is easier to do by dividing the numerator, 3, by 3 to get 1. A third of three quarters is one quarter. A third of 3 horses is 1 horse.

All of which brings us to the picture of the Sierpinski triangle fractal. Fractals are wonderful examples of patterns in maths. This triangle will go on for ever like all fractals. Look at the three pennies at the top. This group of three pennies is repeated over and over again to make bigger triangles. Here's a link to the wonderful Fractal Foundation site where pattern reigns supreme.       

Wednesday, January 18, 2017

DeVos and Special Education

In Canada, all the ministers are experts on the fields they are in charge of. The Education Minister has teaching experience and the Minister of Immigration is an immigrant. In the US we seem to adopt the opposite policy where people are put in charge of thing sabot which they know very little.

This is wonderfully illustrated this week were Betsy DeVos, the president elect's pick for Education Secretary apparently has no idea what IDEA is. IDEA is the remarkably successful federal act that was adopted many yeaers ago to provide students with special needs access to a regular education. As a parent of a son with Down Syndrome i can attest to the success of this program. Now 24, he has many neuro-typical friends, has a wonderful social life, attends college and works several jobs. Without IDEA he would have gone to a special school like such students do ini Singapore, Russia, and many other countries where his disability would have been stigmatized and he never would have become a productive, integrated member of society.

When asked about IDEA in the confirmation hearing DeVos said it should be up to individual States whether to include children with special needs in public schools. Clearly she is totally unaware of the requirements of the public law.  This is the same as the Secretary for Foreign affairs not knowing where Russia and China are.

Devos, a billionaire,  has clearly never set foot in a public school and has no idea what special education is all about. Private schools, where her children attended,  are not required to provide special education services in most States and so her goal or privatizing education is going to have a profound effect upon the education of these most vulnerable members of society.

On a personal ;level, I am so glad that my son is no longer in public schools and that I am retired but my heart goes out to all those parents with children with special needs worried about what is going to happen. Heaven forbid we return to the pre-1975 special school situation,  

Thursday, December 29, 2016

Evenly Odd or Oddly Even

If there's one thing that drives me crazy in maths it's the sayings and phrases we've come up with over the years to supposedly help students learn maths more efficiently. Two, in particular drive me nuts.

"You can't take 5 from 2" is a particularly useless thing to say when you are doing the subtraction algorithm such as 62 - 25. Children typically learn this when they are in second grade but then have to unlearn it when they get to 5th or 6 th grade and encounter negative numbers. It should be immediately apparent 5 is more than 2 so you regroup 62 into 50 + 12 so you can subtract 5 from 12 and 2 tens from 5 tend to get 37. Actually it's easier to use negative numbers. Just say 2 minus 5 is -3; 60 - 20 is 40, then 'subtract' the -3 and you get 37.

The other one that really gets to me is "an even number is a number that is divisible by 2".  This pearl of wisdom often crops up in crossword puzzles and should include "to give another whole number" to be accurate, Every number is divisible by 2 in some way, except 0. We can, of course say that even numbers end in 0,2,4,6,or 8 while odd numbers end in 1,3,5,7 or 9. Conceptually, even numbers comprise  pairs of things in them while odd numbers always have one thing by itself.

One way to think about this is to see the school bus on the left as if it was made of cubes. One at the front for the hood and then pairs stacked on top of each other for the rest of the bus. No matter how long the bus is, or how  many pairs you add, the number of cubes will always be odd.




Now look at the second school bus without the hood, or the odd block at the front. No matter how long the bus is, or how many pairs of blocks you add the number of blocks will always be even.

Another interesting thing about odd and even numbers is the way they impact our culture. For example, in Japan odd numbers are preferred while in the the US we prefer even numbers.

Odd and even numbers even elicit emotions as this Guardian report illustrates. Odds and evens even have gender assignments as this Kellogg study reports

Sunday, December 18, 2016

It's Never Too Early to Count


It's never too early for young children to interact with the world of maths. Children learn the fundamentals of what we call quantitative literacy in the same way they learn to speak and read at a young age: through experience and practice with someone who knows what they are doing.

As I mentioned a few posts back my daughter Marie and her husband Erik are doing an amazing job helping their son Lachlan learn the intricacies of counting and other aspects of maths They don't force it on him, make him complete math activities, or even call it maths. They just make him aware of the quantitative and geometrical aspects of his life  as he interacts with the world around him. Currently, he is coming to terms with the oral number name sequence up to twenty. He nearly has it except some of the teen numbers are a bit random.

Quite remarkably, at two and a half, he also is beginning to develop a sense of cardinality. This is when you put quantities to the number names, Right now when hes says, "one, two, three, four" etc he is just saying a sequence of words, a little like reciting the alphabet. He has cardinality with two; he can identify two objects that are the same. This is an important idea because you cannot count rationally unless you know what you are counting. He can identify two fingers or two tractors or two people. The fingers, tractors and people are the referents of the counting words, the things to which "two" refers. In early rational counting the identification of the referent is important because we can develop the idea of counting as the process of  "one more"; three is two and one more altogether. The word "three" now refers to the objects which were two and one before they were joined together to make three.

This is not as easy as it sounds because there is also the ordinal and nominal use of number. The ordinal use of number, first, second, third  really doesn't come into play at this point in the learning to count process. But the nominal use of number, using numbers to name things, does. In the picture above the numeral 1 appears above a single tomato, as do 2,3 and 4. It's easy for a young child to name each tomato as 1,2,3 or 4. This would be a good activity for teaching the numerals once they had been learned orally. But to teach  rational counting, or the cardinal use of number, you would need a picture with one tomato next to the 1, two tomatoes next to the 2 and so on so that the numeral becomes a number associated with that many.

Making maths a part of everyday life for young children is easy if you know what you are doing. Bedtime Math is a wonderful resource I have mentioned before.    

Thursday, December 15, 2016

The 3Rs - Ridiculous Regulated Rubbish

Just about everyone thinks of Reuse, Reduce and Recycle when "the 3 Rs" are mentioned these days. Everyone, that is, except the British Government who still, inexplicably,  refer to primary education as "the three Rs" even though only one of them now begins with R (reading  writing and maths).

In addition to introducing the school "league tables", as if education was a sport, the Conservative Government has now increased the level of difficulty of the standardized tests they give to primary school (elementary school)  children which means, somewhat obviously, that the scores of students are going to be lower than they were with the old test last year. Just last week I blogged about how tests only measure other tests, an assertion that seems well supported by the British Government's latest advice to parents to "ignore the latest test results".

Unlike Canada, where each minister is an expert in her or his field, the British (and US) governments appear to revel in the idea of putting people in charge of things about which they know nothing. Nick Gibbs, the current Minister of State for Schools at the DfE in the UK was an accountant before he became a politician. It seems remarkable that schools and children are compared using tests that measure a narrowly defined set of skills and knowledge at a particular moment in time using a specific medium and think that anything useful can be obtained.

To then say that only 53% of children "meet the standard" is absolute Ridiculous, Regulated Rubbish.

Wednesday, December 14, 2016

Counting Grandchildren

One of the wonderful combinations in one's life, as I am discovering, is to be retired and have a grandchild. It took me quite a while to make the adjustment to being retired but no time at all adjusting to having a wonderful grandchild.

Since I was a professor of maths education for most of my working life my brain is pretty much dominated by the idea of number so when I retired all sorts of numerical thoughts began to spring into my mind. Most of them were things that had never occurred to me before or things that I may have taken for granted. For example, I no longer meet upwards  of 80 or so new people, students,  in my life each year. There were usually around this many students in the courses I taught each year. And then when I supervised student teachers in public school classrooms I would frequently meet another 100 or so  new children each year. Only now that I am retired have I become acutely aware of just how much I learned from all these new people I met each year; the interactions, the term papers I read, the classroom events and experiences all conspired to enrich my life each year, I miss these interactions so much and frequently wonder if I did take them for granted. I don't think I did but it all looks so different now.

So I now have time to watch and interact with my two and a half year old grandson as he comes to terms with the wonderful world of maths. He has already learned to say "Sierpinski triangle" and can pick one out in a whole bunch of different triangles. There is nothing quite like hearing him say those two words and pointing at an example of one, Numerically, he is going through the process of learning the number names and, dare I say it, has already the beginnings of a sense of cardinality at least with two and maybe three objects. His mom, my daughter Marie, took my maths ed. grad course several years ago and so is really in tune with the growth and development of a child's counting skills. She demonstrates so wonderfully the two most importance things in teaching maths. First the importance of observing the student, her son, and second, just how much a full understanding of the most basic mathematical ideas is to the teaching process. She doesn't push maths on him at all but just makes him mathematically aware of the world in which he lives.  

Even something as seemingly simple as helping a student count requires a deep understanding of the ordinal, nominal, and cardinal use of number. Lachlan, my grandson, is currently learning the sequence of the number names. He can number name more or less up to twelve but hasn't yet quite got the teen sequence. I say number naming because he really is not counting yet in the true sense of the word  apart from, perhaps, "twoness" and "threeness". When he number names he is just learning the order in which the number names occur. He has, yet, no sense of "fiveness", for example. More next time on the nitty gritty of learning to count.